
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1968

Automatic allocation of digital computer storage
resources for time-sharing
Frank Gerald Soltis
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Soltis, Frank Gerald, "Automatic allocation of digital computer storage resources for time-sharing " (1968). Retrospective Theses and
Dissertations. 4633.
https://lib.dr.iastate.edu/rtd/4633

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/4633?utm_source=lib.dr.iastate.edu%2Frtd%2F4633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

This dissertation has been

microfihned exactly as received 69-9896

SOLTIS, Frank Gerald, 1940-
AUTOMATIC ALLOCATION OF DIGITAL COM
PUTER STORAGE RESOURCES FOR TIME
SHARING.

Iowa State University, Ph.D., 1968
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan

www.manaraa.com

AUTOMATIC ALLOCATION OF DIGITAL COMPUTER

STORAGE RESOURCES FOR TIME-SHARING

by

Frank Gerald Soltis

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved :

In Charge of Major Work

Head of Major Department

D%fn of Graduate College

Iowa State University
Ames, Iowa

1968

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

INTRODUCTION 1

ANALYSIS OF TIME-SHARING COMPUTER SYSTEMS 5

Mathematical Analysis 5

Simulation 7

Selection of an Analysis Technique 8

A Description of the Simulation Program 10

SELECTION OF A TEST CASE 17

Equipment Configuration 18

Job Mix Selection 20

PAGING STRUCTURE OF A TIME-SHARING COMPUTER SYSTEM 35

Demand Paging 35

Drum Paging Structure 37

IMPROVEMENT OF SYSTEM PERFORMANCE 43

Scheduling of the Paging Drums 47

Multiple Sets of Registers 48

Hardware Paging Structure 50

Queue Structures 67

EVALUATIONS AND CONCLUSIONS 73

Evaluation of System Performance 73

Conclusions 81

Concluding Remarks 83

BIBLIOGRAPHY 85

ACKNOWLEDGMENTS 87

APPENDIX 88

www.manaraa.com

1

INTRODUCTION

"Time-sharing" is the term used to describe a computer system in which

each user in turn is given a certain amount of operating time (i.e., a

time slice). In this way the system's resources can be effectively

"shared" among many users. Most of the current time-sharing systems

operate in a multiprogramming environment, wherein a number of programs

reside in main core at the same time. A problem which soon becomes

apparent is that, for a large number of users and large programs, not all

programs can fit into main core at the same time. The solution to this

problem is to provide the system with a large capacity auxiliary storage

device (i.e., secondary storage) which may be considerably slower than

main core but which is able to efficiently transfer blocks of information

to and from main core. These blocks of information are called "pages".

The concept of paging was first introduced on the ATLAS computer,

which is described in a paper by Kilburn e_t (8). Paging can be

defined as the transmission to and from secondary storage, the relocation,

and the execution of programs on a paged basis. Relocation refers to the

translation of a program's addresses into the actual locations in main

core. This is needed because it is not possible to put a page into the

same main core location every time it is read in. Whenever a program

refers to some address which is not in main core, it is necessary for the

system to locate the page in secondary storage which contains that address

and read in that page. It may be necessary to write out to secondary

storage some page in main core in order to make room for the page being

read in. Thus, pages arc constantly being transferred to and from

www.manaraa.com

2

secondary storage in a paged time-sharing computer system.

Since the paging structure is unique to a time-sharing system, a

number of design decisions have been encountered which are not present in

the design of a conventional computer system. The selection and organiza

tion of secondary storage; the means of accomplishing the relocation

operation; the development of algorithms for page replacement, page

reading, and page writing; and numerous other decisions must be made in

order to design the paging structure.

Because of the large number and complexity of these many design

decisions, it is not surprising that many different paging structures for

time-sharing systems have been proposed. The performance of some of these

proposed structures has been very good; others have not fared as well. The

causes of the poor system performance of some systems and remedies for

this poor performance have generated a great deal of interest among system

designers. While it is obvious that the many design decisions do affect

the performance of the time-sharing system, very little is known about

how much of an effect any particular decision has on the total system

performance.

This study will examine the behavior of a paged time-sharing system

with the objective of determining those areas of the paging structure

which offer the most opportunity for improvements in system performance.

Because there is no universally accepted design for a paging structure,

it will be nccessary to select some particular system whose design is

representative of current time-sharing philosophy and to analyze this

system thoroughly. Modifications to the paging structure which improve

the total system performance will be proposed and the generalized results

www.manaraa.com

3

found for this system will be extended to other systems.

Some means must be found to analyze the operation of a time-sharing

system. The second chapter describes some of the analysis techniques

which have previously been developed. The system selected to be studied

and a description of the analysis technique chosen are also presented in

this chapter.

In order to provide valid results for the system study, very careful

consideration must be given to the selection of a test case. The

determination of the test cases and the reasons behind their selection are

given in the third chapter.

In the fourth chapter the effect of the paging devices on system

performance is examined. The paging drums are shown to be able to

deliver pages to the system at a rate which can maintain satisfactory

system performance. Some of the major causes of poor system performance

are pointed out in this chapter.

Those areas of the paging structure which degrade the system

performance are studied in the fifth chapter. The proposed changes to

these areas are given in detail and the effects of each change on the

system behavior are presented. Each change is carefully examined on its

own merits to determine how significant an improvement in system performance

can be obtained.

The sixth chapter summarizes the results which have been obtained by

modifications to the paging structure. These results are then generalized

to determine which areas of the paging structure can offer the most

opportunity for improvements in system performance. Additional areas for

www.manaraa.com

tudy are proposed and some concluding comments about time-sharing

tudies are given.

www.manaraa.com

5

ANALYSIS OF TIME-SHARING COMPUTER SYSTEMS

This chapter is concerned with the selection of-an analysis technique

which can be used to investigate the operation of a time-sharing computer

system. A survey of some of the studies that have been made is first

presented, followed by a more detailed description of the technique

selected. Basically, there are two means of analyzing the behavior of a

time-sharing system: mathematical analysis and simulation.

Mathematical Analysis

In order to develop a mathematical model of a system, some structure

must be assumed. A common model of a time-sharing system is taken to be

an interconnection of queues and processes ji/ith a known stochastic flow of

tasks between them. An arithmetic processor, a stored program, a data

channel, and even a user are considered to be processes. On the other hand,

a queue is regarded as a list of uncompleted tasks whose routes between

processes are indistinguishable. Associated with each process is a

service time, representing the length of time a task will occupy that

process. Other factors affecting the flow between processes, such as

arrival times, priority assignments, etc., must also be represented in the

model. The state of the system at any time is described by the number of

entries in the various queues.

The structure assumed is a fairly good representation of general

purpose, time-sharing system and is the model derived from a Markov chain.

Taken together with the assumed probability distributions for arrival and

service times, this model can be analyzed by means of Markov process theory

to predict system behavior. The objective of the analysis is to evaluate

www.manaraa.com

6

the probability distributions of the states. Once these distributions

are known, other probablistic measures of interest, such queue lengths,

processor utilization times, and through-put rates, can be determined.

For a discussion of how these distributions are obtained for a Markov

model, see the paper by Wallace and Rosenberg (18).

There have been many studies conducted to analyze computer systems

using Markov models. One of the best studies was made by Smith (17).

In his paper Smith describes a paged, time-sharing structure for which a

queuing model was derived. The model did represent the system operations

fairly well, but the requirement that the model remain a Markov process

severely restricted its flexibility. However, this is one of the few

studies which have attempted to analyze a paged structure.

Not all analyses concern themselves with the performance of the entire

system. A paper by Fife (2) describes a study of job scheduling techniques

used in a time-sharing system. Krishnamoorthi and Wood (9) explored

methods which would aid in the selections of time slice intervals.

The papers described above, as well as many others, represent

attempts to analyze a general purpose, time-sharing system using

mathematical techniques. While none of them have completely achieved this

goal, a number of them have made significant contributions. All suffer

from a general lack of flexibility. Unfortunately, the assumptions made

by many in proposing models, render their results totally useless for any

practical system.

www.manaraa.com

7

Simulation

The second means of analyzing the performance of time-sharing computer

systems is simulation. An excellent review of computer system simulations

is given in a paper by Huesmann and Goldberg (6). Some of the more

important simulation studies are discussed in the following paragraphs.

Scherr (16) developed a very good simulation of the MAC system at

MIT. The description of the system is through a series of statements and

subroutines written in MAD (Michigan Algorithm Decoder) which allow the

hardware configuration and operating system to be specified in as much or

as little detail as desired. The job mix is generated according to desired

statistics which are inputs to the simulator. The program also uses

statistics gathering routines to obtain data on the job mix which outputs

along with response times, through-put rates, queue lengths, overhead

times, etc.

Fine and Mclsaac (4) discuss a simulation of the System Development

Corporation (SDC) Q-32 time-sharing system. Most of the important

characteristics of the simulation, such as hardware configuration and

operating system information, are described within the simulation program

with only a few of them being input parameters. The job mix is specified

statistically with probability distributions read in, and the simulator

generates jobs according to these distributions. The output of the

program is in the form of response times, overhead times, swap times, etc.

The simulation did reflect the behavior of the SDC computer fairly well.

Nielsen (13) extended the results of Scherr and of Fine and Mclsaac

in order to produce a more general time-sharing simulator. His simulation

program successfully models the IBM System/360 Itodel 67, but it requires

www.manaraa.com

8

some reprogramming to simulate most other systems.

Special simulation languages, such as GPSS and SIMSCRIPT, have been

used to simulate various time-sharing systems, although these languages

are not specifically designed to simulate only computer systems. There are

simulation languages that have been designed specifically to model computer

systems. IBM's CSS (Computer System Simulator) and LOMUSS (Lockheed's

Multipurpose System Simulator) are two such languages.

The simulation efforts just described were undertaken in an attempt

to simulate one particular time-sharing system. Ideally, a simulator

would require only the input parameters to describe any system.

Unfortunately, no such simulator exists or is likely to exist for some

time due to the differences in hardware and operating systems of the various

time-sharing systems. In spite of its drawbacks, a simulation study

appears to be the most promising means of analysis of a time-sharing

system.

Selection of an Analysis Technique

To analyze only the paging structure of a time-sharing system, it may

be possible to use strictly mathematical techniques. However, the object

of this study is to investigate the behavior of the entire system with

respect to changes in the paging structure. For this reason, it is

necessary to select some analysis technique which can be used to model

the entire time-sharing system. Since simulation offers the most

promising results, it will be used.

The selection of a system to analyze also presents some interesting

problems. Selecting a general time-sharing system, which in itself is very

www.manaraa.com

9

difficult to define, raises the question of the validity of the simulation

results with respect to any particular system. Also, the most successful

simulations have been designed to simulate some particular system. There

fore, it appears that the most practical approach is to select some

particular system which is representative of current time-sharing systems

and to extend the results to other systems.

Ideally, the system selected should reflect the design used in most

current time-sharing computer systems. It should be a well documented

system with these documents readily available. And finally, there should

be as many of these systems in use as possible, so that the behavior of the

actual system is known. A system which meets all of these requirements is

the IBM System/360 Model 67. Consequently, the Model 67 will be the system

used.

Detailed descriptions of the Model 67 are given in papers by Gibson

(5) and Comfort (1) as well as in an IBM publication (7). A brief

description of this system is also given in the Appendix.

As a bonus for selecting the Model 67, the simulation by Nielsen,

which has been shown to accurately reflect the behavior of this system,

was available. A copy of this simulation program was obtained from

Nielsen at the Stanford University Computation Center.

The simulation program finally used in this study was not the same

as the one originally received. The original simulation apparently was

designed to be as general as possible in order to simulate any paged,

time-sharing system. To make the program simulate any particular system

required some reprogramming. In order to simulate the structure desired

for this study, a number of modifications had to be made to the original

www.manaraa.com

10

simulation program. A copy of the final version used is available at the

Iowa State University Computation Center Library.

A Description of the Simulation Program

In this section a brief description of some of the salient features

of the simulation program is presented. For a more detailed description

see the original work by Nielsen (13) or his two other papers (14) and

(15) which also describe his original work.

Levels of simulation studies

An important consideration for any simulation is to determine what

level of system activity is to be simulated. Four levels of simulation

studies are given in Table 1.

Table 1. Levels of simulation studies

Level Size unit Time unit

1 job seconds

2 page milliseconds

3 instruction microseconds

4 bit nanoseconds

The first level is the one which is of most interest to the system's

user. Although the user is interested in statistics in terms of jobs and

seconds, these units are too large to produce a meaningful simulation.

The system designer is interested in simulations at the second level of

www.manaraa.com

11

system study. The simulation by Nielsen is at this level with basic

units of a page and 0.1 milliseconds. The third level is of some interest

in a study of the paging structure, but any simulation of system behavior

using this level's basic units becomes very long and time consuming.

Fortunately, independent studies> both analytical and simulated, can be

made at this level; and the results obtained can be used as inputs to the

second level simulation with very good results. The fourth level is of no

particular interest in a system study.

Representation of jobs

One of the most important aspects of the simulation program has to do

with the methods used to represent jobs in the system. The validity of the

simulation depends in many ways on the means used to represent jobs.

A common technique used to represent jobs in a system is to input to

the simulation the distributions for the length of time a job executes in

any page and the next page a job will reference. Since the characteristics

of a job can change as the job progresses, it is desirable to have

different distributions for the various stages of a job (e.g. compile,

link-edit and execute).

Nielsen represents each section of a job as a sequence of page

references and supervisor services appropriately spaced by execution times.

Several of these sequences can be linked together and/or repeated in any

desired manner to represent an entire job. For example, the syntax

checking and table building phase of compiling a one hundred statement job

could be handled by describing the sequence of operations for two statements

and then repeating this sequence fifty times.

www.manaraa.com

12

These sequences must be generated by the system's user for every

desired job type in the system and are then input to the simulation

program as master sequences. In this way the master sequences represent

prototype jobs for each different job type. While the construction of these

prototype jobs can be an extremely involved process, it is a once only

operation for the simulation's user.

The simulation program uses the prototype jobs to construct the

sequences for each job in the system. At the time that each of these

sequences is constructed from a prototype, the simulation program deter

mines according to appropriate random distributions the number of repeti

tions to be used, the terminal user's "think" time for each terminal

interaction, the next master sequence to be used, etc. Because of the

random nature used to construct each job sequence, no two jobs constructed

from the same prototype are exactly the same. Two jobs of the same type

will have the same characteristics, but they will not be carbon copies of

one another.

A special job description language was developed to describe the job

sequences. This language consists of a set of fourteen instruction types.

Eight of these instruction types appear in both the master sequence and the

specific job sequences. These instruction types determine the behavior

of a job during its simulated execution time. They are used to specify

the execution time before a particular operation is to occur and to

control page accessing, terminal interactions, I/O operations, etc. The

six other instruction types are used only in the master sequence. They

are used to build the specific job sequences from the master sequence.

The description of the job representation presented here has been

www.manaraa.com

13

necessarily brief. For a more detailed discussion, the reader is referred

to the paper by Nielson (14) which has been almost entirely devoted to a

description of the representation of jobs used in this simulation program.

Implementation

Nielsen implemented the simulation program in Fortran because he felt

that there were no special simulation languages widely available. The

source program consists of about 7000 statements organized into 31 sub

routines each concerned with one particular aspect of the simulation.

This modularity was used so that changes necessary to simulate other

systems could be made as easily as possible.

In the simulation program one word is used to keep track of each page

in the system whether it is a physical memory page or a virtual memory

page. The word representing each page indicates the status of the page,

the location of the page, and the task associated with the page. Queues

in the system are represented by lists of words. To simulate a page on one

of the queues in system, such as a page read queue, its word is attached

to the list representing that queue.

Scheduling of events in the system is accomplished by the event

calender queue. Entries are removed from this queue according to the

earliest time of occurrence. A master clock is used to keep track of the

system time in units of 0.1 milliseconds (i.e., the basic time unit).

Statistics are gathered periodically by various routines during the

simulation and are summarized at the end of the simulation to produce the

output results.

www.manaraa.com

14

Simulation inputs -,

Approximately 1500 data cards are used as inputs to the simulation

program. The first set of data cards describe the monitor parameters.

The monitor parameters include such things as the length of a time slice

and the overhead times required to perform the many system functions. The

next section is concerned with the equipment configuration. The names,

quantities, capacities, transmission rates, rotational delays, seek times,

etc. of the various devices in the system are given in this section. The

next two sections contain the simulation run parameters and the data

analysis parameters which are used to control the simulation and gather the

statistics for the simulation's output. The terminal characteristics

indicate which jobs are used in the system. Following this are the list

of the prototype jobs and the list of instructions for the prototype jobs.

Simulation results

This section presents a description of the information which will be

given in the table of results for each simulation run made for this study.

It should be kept in mind that the simulation program produces much more

information than can be included in the tables. Thus, the tables will

present a concise listing of the most important simulation results.

Simulation times Two simulation times are given in the table of

results. The first is the length of the initialization time in seconds.

The simulation resets the statistics gathering procedure at the end of

the initialization period. In this way, the problems of the startup and

the initial transient of the model can be ignored. The second is the

length of the simulation run in seconds after the statistics gathering

www.manaraa.com

CPU data The percentages of GPU time used for execution, overhead,

and idle are given in the tables of results. Execution time is the total

amount of system time during which one task in the system is executing

instructions. Since only one task can be executing at a time, all other

tasks must be idle. Overhead time is the total amount of system time used

by the monitor to perform such functions as I/O scheduling, interrupt

handling, etc. While the system is performing overhead functions, all

tasks are idle. Idle time is the total amount of system time during which

no work is being done by the system (i.e., all tasks are idle and no

overhead functions are taking place). It is important not to confuse

system idle time and task idle time. The idle time given in the tables

is system idle time. The distribution of execution, overhead, and idle

times indicates how much useful work is being performed by the system.

Response times The response time is the time between two consecu

tive time slices for a task. It is an indication of the amount of time

required by the system to respond to a request by a user at a terminal.

The average response time in seconds is given in the table of results along

with the range of response times. This range gives an indication of the

best and the worst response times for the system.

Paging rates The average number of pages per second transmitted

to and from (i.e., write and read, respectively) secondary storage is given

in the tables. Also, the average number of pages per second retrieved

from core queues before being replaced is given. These values indicate

the amount of paging activity taking place in the system.

www.manaraa.com

16

Queue data The average number of requests in the drum read and

drum write queues is given for each simulation run. These values give

some indication of the paging activity of the drums.

Device utilization The percentage of total time during which the

drums and the nonpaging disks are used is given for each simulation run.

www.manaraa.com

17

SELECTION OF A TEST CASE

In order to simulate the operation of any proposed time-sharing

system, it is necessary to carefully define the equipment configuration

and job mix that will be used as inputs to the simulation. The simulation

studies cited in the previous chapter have shown that the performance of a

time-sharing system is very sensitive to the details of this definition;

therefore, some rational means must be employed in the selection of test

cases which will be used to compare the performance of various systems.

Clearly, it is neither possible nor desirable to exhaustively test

every combination. An arbitrary selection of a "typical" configuration

and job mix leaves the not-so-small problem of defining just what is

typical. There are, however, certain guidelines which can be used to

make a reasonable selection.

The selection of an equipment configuration is based more on economic

considerations than on equipment availability. Although system performance

is very much dependent upon this configuration, there are fewer undefined

variables involved than there are with the job mix selection; thus a

reasonable equipment configuration can be readily determined.

Selection of a job mix to be used as a test case for a time-sharing

system simulation is a different matter. What may be a "typical" job mix

for one installation may be totally foreign to another. It soon becomes

evident that there is no such thing as a general job mix. Any particular

job mix selected must be justified solely on its applicability to the

environment at hand. Some guidelines which can be used to make a selection

of a job mix are:

www.manaraa.com

18

1. The job mix selected for the simulation should resemble a job

mix found in the "real world". That is, the distribution of

job types and lengths should be determined from a study of some

actual installation.

2. The job mix should be stable with respect to order of jobs

input to the simulation, starting time for each job, and

length of the simulation runs. This means that after a suitable

initialization period, the simulation process is time-stationary.

Also, the simulation results should be insensitive to minor

variations in the job mix.

3. More than one job mix may be needed to reflect the total

system performance. Perhaps one mix is used for prime time

operation (heavy conversational and light batch), and another

mix is used for overnight operation (light conversational and

heavy batch). Extremes in the job mixes may be one way to

obtain the total performance.

After a stable job mix has been obtained, it is possible to use it

with a number of simulations of proposed time-sharing systems and be

reasonably certain that any variations in performance among the systems

are significant. In other words, any variation is due to the system

structure and not to the job mix.

Equipment Configuration

The equipment configuration selected for the test case will be made

up of the hardware components available for the IBM System/360 Model 67.

A study of an appropriate configuration for the Stanford University

www.manaraa.com

19

Computation Center was used as a guide. The configuration selected is

listed below.

1 CPU — The processing unit is initially the 2067, the CPU

of the 360/67. It has the computational power of the model

65 computer with the hardware capability of dynamic address

relocation.

3 Core Storage Units (2365) — Each unit has 262,144 bytes with

a cycle time of 750 nanoseconds for an eight byte reference.

Three of these units provide 166 nonsystem pages (1 page =

4096 bytes) and 26 system pages for the Model 67.

2 Paging Drums (2301) — Each drum has a capacity of 4,090,000

bytes or 900 pages (4% pages per track). Transfer rate is

1,200,000 bytes per second and the rotational period is

17.2 milliseconds.

1 Disk (2314) — There are 8 modules/disk, each with a separate

access mechanism. Each disk has a total of 207,014,000

bytes and a transfer rate of 312,000 bytes per second.

The rotational period is 25 milliseconds, and the seek

time is from 30 to 140 milliseconds.

4 Magnetic Tape Units — These are nine track units with a

transfer rate of 60,000 bytes/second.

3 Line Printers (1403) — Each unit prints approximately

1100 lines/minute.

2 Card Reader — Punches (2540) - Each unit reads 1000 cards/minute

and punches 300 cards/minute.

www.manaraa.com

20

3 Selector Channels (2860) — High speed devices (drums and disks)

are attached to the selector channels.

1 Multiplexor Channel — The slower I/O devices are attached to

this channel.

Transmission Control Units — Each unit can control up to 31

remote terminals.

Terminals — As many terminals (teletypes) as required for the

job load are attached to the system.

Job Mix Selection

This study involves the selection of the job mix (or mixes) to be

used for the test cases. The guidelines previously presented will be

followed, and both analytical and simulation methods will be employed

to obtain a reasonable job mix.

The first guideline is that the job mix should resemble one found in

the "real world". The "real world" in this case will be the Iowa State

University Computation Center. A distribution of job run times from

June 15, 1967 to June 15, 1968 was obtained and is shown in Figure 1.

From this distribution it is possible to place the jobs according

to run time into four main classifications:

Short 0-15 sec 41%

Med. Short 15-60 sec 28%

Med. Long 60-300 sec 24%

Long over 300 sec 7%

Within each of these classes there would be a distribution according

to job types. In general, conversational jobs would tend to be shorter

www.manaraa.com

21

20% -

15% -

10% -

5%

short

41%

med.
short

med.
long

28%
k — ^
' 24% '

long

7%

0 5 10 15 30 60 120 300 600 1800 over
1800

Run Time (Seconds)

Figure 1. Distribution of job run times

www.manaraa.com

22

than batch jobs. The disiiXstribution of run times for conversational jobs

would tend to be skewed t«l toward the shorter run times. The batch jobs

would tend to be skewed t<l toward the longer run times with respect to the

total job mix.

Job list for simulation

Stanford University «^developed a list of 35 job types for the simula

tion along with the appxo(3ropriate instruction list for each job type. This

list, which required threittree man-months to assemble, reflects the general

types of jobs likely to bi be found in a time sharing system. No claim is

made that a job typt reprif^jresetits the exact behavior of any real job. How

ever, the job types do iiairfcave the same characteristics of a real job (e.g.,

a list processing job willtiH do a lot of paging).

The job mix is obtaiiaaitied by selecting job types from this list. Any

job type on the list maj ify te used as many times as needed to form the

desired distribution. Irtfln. addition the starting time and the waiting time

before a completed job Tesireinitializes itself must be specified for each job.

The list of job typeiijpes along with their priorities and run time classi

fications is given in Tablsable 2.

Simulation Series I [I vas designed to aid in the selection of a job

mix and to determine the ke test cases which could be used to compare the

performance of later serirries with that of the Model 67 as simulated in this

series. The results of C' this series of simulations are given in Table 3.

Test mix 1. — totally co#:oaversationa 1

In order to eliminatlkate as many variables as possible in the selection

of a stable job mix, the he first test mix is totally conversational.

www.manaraa.com

23

Table 2. Simulation job list characteristics

Job Description Priority*
Run Time

Classification

1 1000 statement conv. 2 medium short
2 1000 statement conv. 2 medium short
3 1000 statement conv. 2 medium short
4 1000 statement batch 3 medium short
5 1000 statement batch 3 medium short
6 1000 statement batch 3 medium short
7 150 statement conv. 2 short
8 150 statement conv. 2 short
9 150 statement conv. 2 short
10 150 statement batch 3 short
11 150 statement batch 3 short
12 150 statement batch 3 short
13 50 statement conv. 2 short

14 50 statement conv. 2 short

15 50 statement conv. 2 short
16 file maintenance 3 medium long
17 desk calculator 2 short
18 game 2 medium short
19 heavy cmpt. conv. 2 medium long
20 heavy cmpt. batch 3 medium long
21 tape to file 1 medium short
22 file to tape 1 medium short
23 disk to print 1 medium long
24 card to disk 1 medium long
25 list proc. med. conv. 2 medium long
26 list proc. med. batch 3 medium long

27 list proc, large conv. 2 long
28 list proc. large batch 3 long
29 prog, ckout system 2 short
30 production med. conv. 2 medium long
31 production med. batch 3 medium long
32 production large conv. 2 long
33 production large batch 3 long
34 short execute 2 medium short
35 never finish 2 long

^Priority level 1 - l/O jobs
Priority level 2 - Conversational jobs
Priority level 3 - Batch jobs

www.manaraa.com

24

Table 3. Results of Simulation Series I

Run la lb Ic Id le 2a 2b
\

Initialization time 30 30 30 60 60 30 60

Run time 180 180 180 180 300 180 180

CPU data
Execution
Overhead
Idle

33.6%
33.2%
33.2%

33.7%
32.3%
34.0%

33.8%
32.7%
33.4%

34.8%
33.1%
32.1%

34.8%
33.2%
32.0%

40.8%
33.2%
26.0%

38
33
27

Response time
Average
Range

1.57
1-3

1.57
1-3

1.57
1-3

1.64
1-3

1.64
1-3

3.10
1-6

3
1-6

Paging rates
Read
Write

27
52

26
48

27
48

28
50

28
49

30
36

32
37

Pages retrieved 43 38 40 41 40 17 17

Drum queue data

Read - average
Write - average

2.0
1.8

2.0
1.9

2.0
1.8

2.0

1.9

2.1
1.8

2.2
1.7

2
1

Device utilization
Drums
Nonpaging disks

15%
2-38%

13-15%
2-37%

12-16%
2-41%

12-17%
1-43%

13-16%
1-42%

12-13%
3-41%

12-
2-

www.manaraa.com

25

Table 3 (Continued)

Run 2c 3a 3b 3c

Initialization time 60 30 60 60 60

Run time 300 180 180 300 180

CPU data
Execution 40.1% 59.5% 59.2% 59.7% 42.2%
Overhead 33.7% 31.8% 32.2% 31.8% 41.1%
Idle 26.2% 8.7% 8.6% 8.5% 16.7%

Response time
Average 3.09 3.82 3.82 3.81 3.04
Range 1-6 3-5 3-5 3-5 2-5

Paging rates
Read 32 22 23 . 22 60
Write 37 29 29 28 56

Pages retrieved 16 16 15 15 13

Drum queue data
Read - average 2.2 1.9 1.9 1.8 3.4

Write - average 1.6 1.6 1.6 1.5 1.8

Device utilization
Drums 13% 9-10% 9-10% 9-10% 22%
Nonpaging disks 2-43% 2-33% 1-35% 1-35% 1-45%

www.manaraa.com

26

After a stable, conversational job mix has been determined, background

jobs will be added to produce a combined mix.

Twenty five jobs are used with job types which were selected to fit

the distribution previously determined. Since all jobs are conversational

in nature, the distribution was skewed slightly toward the short jobs.

Simulation runs (Series I - Run 1) were used to determine the

stability of the job mix with respect to order of jobs input to the

simulation, starting time for each job, and length of the simulation runs.

Run la was made with the order of input jobs as given above, and all

jobs started at the same time. Run lb was made with the order of the jobs

completely reversed, all jobs starting at the same time; and Run Ic was

made with different starting times for the various jobs. A comparison of

the results for these runs shows very little variation. Note that due

to the random methods used to produce jobs in the simulation, the job

mixes produced by re-ordering the input sequence are not identical. The

job types are the same, but the individual jobs are not necessarily the

same. For this reason a slight amount of variation in the results should

be expected.

Increasing the initialization period (Run Id) only produces a slight

variation in the results. An initialization period of 60 seconds (Run Id)

appears to be adequate to produce consistent results.

A longer run (Run le) shows virtually no change in results with

respect to the shorter run (Run Id). Therefore, Run Id was selected as

the representative run for this test mix.

These simulations show that the job mix selected is stable. The

results of Run Id indicate that for this mix the CPU time is just about

www.manaraa.com

27

evenly distributed between execution time, overhead time and idle time;

and the average response time is 1.6 seconds.

Test mix 2 — background jobs added

Having determined that the conversational job mix selected is stable,

it was then possible to add some batch jobs-to make a combined mix. This

combined job mix now fits the desired "real world" distribution. The

distribution is shown in Figure 2.

The performance results for this heavy conversational-light batch job

mix were given by Simulation Series I — Run 2.

Runs 2a, 2b, and 2c were made with different values of initialization

periods and run times. The only difference in the results of these three

runs is a small variation in CPU utilization times. Run 2b was selected

as the representative run for this job mix.

A comparison of the results of Runs 1 and 2 shows that adding some

batch jobs to the conversational mix shifts about 4-5% of the total CPU

time from idle time to execution time, while the overhead remains about the

same. The response time increased from 1.6 seconds to 3.1 seconds. This

is due to the fact that the operational cycle time (OCT) for the system

is set to 3 seconds. Also note that the total paging activity has been

reduced by adding the batch jobs.

Test mix 3 — heavy batch jobs .

In order to obtain the results for a light conversational — heavy

batch job mix, a third test mix was developed. Once again the "real-

world" distribution was used to produce an appropriate mix.

www.manaraa.com

28

short

41%

med. short

28%

med. long

24%

long

7%

X X
X X

X X X
X X X
X X X X X X
X X X X 1 X X 1 X 0 X X

13 17 7 29 21 1 34 18 25 16 19 23 30 26 20 27

14 8 22 2 24 31 28

15 9 3
10 4
11 5
12 6

The 35 job types (ordered by run time)

X = Conv. jobs
0 = Batch jobs

Figure 2. Job mix distribution for test mix 2

www.manaraa.com

29

Twenty batch jobs and nine conversational jobs are used to make this

mix. The distribution of these jobs is shown in Figure 3.

Simulation Series I — Run 3 was used to provide the performance

results for the light conversational — heavy batch job mix.

Runs 3a, 3b, and 3c were made with different values of initialization

periods and run times. No significant variation exists between the three

runs; so Run 3b was selected as the representative run for this job mix.

The results show that execution time has increased significantly,

idle time has decreased by the same amount, and overhead time is about

the same as for Runs 1 and 2. Average response time is up to 3.8 seconds,

and the total paging activity is further reduced.

Validity of test cases

The test mixes developed were designed to represent the types of jobs

found in a time-sharing system and to fit the run time distribution of an

actual system. One question still remains: How well do the test mixes

reflect the paging behavior of jobs found in a time-sharing environment?

System Development Corporation (SDC) investigated the paging behavior

of several programs that might be typical in a time-sharing system. The

results of this investigation are presented in a paper by Fine et (3).

Figure 4 shows the number of pages demanded by a job as a function of the

job execute time. The assumption is made that the job starts with no

pages and each page is brought in on demand. The demand paging rate is

very high at the beginning of the time slice, but it decreases after a

sufficient number of pages has been made available. During a 100 milli

second time slice (the same length used for the simulation runs) a job

www.manaraa.com

30

short med. short med. long long

41% 28% 24% 7%

0
G G
G 0
G 0
0 G
G -G

XX G G
X X X G G

X X I X I G X G G
- ,, -f • - • - i ̂ I I I • I • N , . . , , , . • '

13 17 7 29 21 1 34 18 25 16 19 23 3G 26 20 27 32 33 35
14 8 22 2 24 31 28

15 9 3
10 4
11 5
12 6

The 35 job types (ordered by run time)

X = conv. jobs
0 = batch jobs

Figure 3. Job mix distribution for test mix 3

www.manaraa.com

31

25-

2 0 -

15-

10 -

-T"

20
I

40

—r
60

—r
80

—I—

100 120

Job Execution Time (Msec.)

Figure 4. Paging behavior of time-sharing jobs

www.manaraa.com

32

references approximately 22 pages. This means that during its execution

time, a job requests pages at the average rate of about 220 pages, per

second.

The simulation program produces the total number of pages requested

by the job mix for each run. The results of the simulation runs show

that during their execution time, job mixes 1, 2, and 3 request pages at

the average rates of 216, 154, and 90 pages per second, respectively.

Thus, job mix 1 has essentially the same demand paging rate as the jobs

studied by SDC. Job mixes 2 and 3 have somewhat lower rates because of

their background jobs which require less paging.

In order to obtain the total performance of the time-sharing systems

being studied, all three job mixes will be used. These test mixes were

designed to represent extremes in the job load. If only one mix had to

be selected, it would most likely be somewhere between job mixes 2 and 3.

A single job mix which can be used to evaluate the total system performance

is difficult to define. For this reason extremes are used.

Also note that none of the job mixes contain any bulk I/O jobs (e.g.,

card to disk, disk to print, etc.). The simulation runs are so short that

any bulk I/O jobs tend to dominate the system activity, and the simulation

results reflect this fact. Since it is the paging structure that is being

investigated, the decision to eliminate the bulk I/O jobs is justifiable.

As a consequence of this decision, the tape units, the card reader-punches,

and the line printers are not used during the simulation runs.

www.manaraa.com

33

Comparison of results

Since the same equipment configuration and job length distribution

were used in each run, a comparison of the results obtained by varying

job types can be made. Some generalizations that can be drawn from a

comparison of Runs Id, 2b, and 3b are given below.

CPU utilization As the job types progress from totally conversa

tional to totally batch, the system idle time is exchanged for execution

time with the overhead time remaining fairly constant. This is as expected

since the purpose of having background jobs is to use the idle time.

Response time The price paid for reducing the idle time by adding

background jobs is an increase in response time. The response time is

lowest with all conversation jobs. Addition of a few background jobs

causes the response time to rise sharply and then level off, rising only

slightly, as more background jobs are added. The value at which this

limiting action takes place is set by the operational cycle time (OCT) of

the system. For this configuration the OCT is equal to 3 seconds.

Increasing the OCT would give more CPU cycles to the background jobs,

while decreasing it would give less.

Paging rate As the percentage of batch jobs increases, the

paging rate decreases. Batch jobs tend to have longer run times and

execute longer without interruption than do conversational jobs. There

fore, the paging rate (pages per second) is generally less for a batch job.

Special test mix — heavy paging

The performance results with job mix 1 show that the system is idle

a good deal of the time. This, together with the fact that a large number

www.manaraa.com

34

of pages are retrieved from the core allocation queues, indicates that the

system can handle a heavier job load. An additional simulation run (Run

4) was made with job mix 1 doubled in size to provide the system with 50

jobs having the same characteristics as mix 1.

Comparing the results of Run 4 with those of Run Id shows that much

of the idle time has been reduced, the response time has doubled, and the

paging rate has been increased. This double job mix will be used as a

test mix when runs with heavy paging requirements are desired.

www.manaraa.com

35

PAGING STRUCTURE OF A TIME-SHARING COMPUTER SYSTEM

The results in the previous chapter indicate that the CPU is either

idle or is performing overhead functions much of the time. Neither of

these is directly beneficial to the progress of a particular user's

problem. This study will investigate some of the causes of these high

idle and overhead times, and methods to improve the performance of the

system will be proposed.

The paging structure is primarily responsible for the poor system

performance. To demonstrate this, it will be necessary to examine the

paging structure philosophy used in many current time-sharing computer

systems of which the IBM System/360 Model 67 is a representative example.

Demand Paging

A fixed-sized page is brought into main memory only after some

location in that page has been referenced. This concept is known as demand

paging. After a task has referenced a new page, that task is placed in a

page wait state, and none of its pages in main memory can be used until

the referenced page is brought in. During this wait, control is given

to another user, assuming that there is another user. In this way page

fetching is overlapped with processing. It is possible, and indeed quite

probable, that all tasks occupying main memory are in a page wait state.

This condition results in CPU idle time. In addition heavy paging demands

can also cause congestion at the paging devices which may result in poor

user response.

In an attempt to minimize some of the problems just described,

alternatives to demand paging have been suggested. The concept of

www.manaraa.com

36

affinity paging involves bringing into main memory groups of pages which

have an affinity for each other. Whenever a single page is referenced,

the monitor is to recognize that certain other pages are likely to be

required and brings in these pages along with the referenced page. Of

course, this concept assumes the ability of the monitor to recognize page

affinities. To provide this ability, the user would most likely have to

supply these page relationships or else organize programs so that they

might be easily segmented. This approach of fitting the jobs to the

system instead of vice versa does not appear to be realistic and for this

has not been universally accepted. Because of a lack of a suitable

alternative, current time-sharing philosophy seems to be firmly committed

to the demand paging concept.

Paging devices must be able to deliver pages at the rate required by

the system. Three types of paging devices currently used in time-sharing

computer systems are described below.

Paging disks

The configuration of the Model 67 allows disks to be used in

conjunction with a drum as the paging devices. The slower disks are used

primarily as back-up devices for the drum. In his original simulations

Nielson (13) demonstrated that the disks seriously degraded the system

performance because of their inability to deliver pages at the required

rate and suggested that the paging disks be replaced by an additional

drum. For this reason no paging disks are included in the equipment

configuration used to develop the test cases.

www.manaraa.com

Paging drums

Drums are the most common paging devices used in current time-sharing

systems. Some investigators have suggested that paging drums are not able

to deliver pages at the required rate and should not be used when heavy

paging demands are involved. A detailed discussion on paging drums is

deferred until a later section.

Large capacity core storage (LCS)

LCS provides the most rapid (and most expensive) means of delivering

pages to requesting tasks. There are two ways in which LCS can be used.

The first is to use LCS in a manner analogous to the use of paging drums.

Whenever a page is requested by some task, that page is located in LCS

and brought into main memory. The second way is to execute directly from

the slower speed LCS, thereby eliminating a page transfer. This second

method can be used very effectively if the number of references to a page

is small or if time-sharing is only a small part of the total system

function. It has been suggested by Lauer (10) that a combination of these

two methods can be used. That is, when a large number of references is to

be made to a page, that page should be transferred from LCS to main storage

if the number of page references is small, LCS can be accessed directly.

Unfortunately, there is presently no way for the system to determine

before the fact how many references will be made to a page, and because

of this, the combination method does not seem to be a practical solution.

Drum Paging Structure

Lauer also analyzed the drum paging structure used for a time-sharing

system. The drum that he considered has one read-write head per track.

www.manaraa.com

38

but only one head can be connected to the channel at any one time. There

are p pages per track with sufficient space between pages to permit head

switching. Thus, on one drum revolution p pages may be read and/or

written. This is equivalent to one head passing p slots per revolution.

The maximum rate at which pages can be transferred to or from a drum is

^ pages per second where T is the time required for one drum revolution.

Page writes are necessary for those pages which have been changed during

a task's time slice and now must be paged out to make room for a subsequent

task's pages. If f is the probability that a page must be written out, then

(1 +^f) T per second is the maximum average rate at which pages

can be read from the drum.

Only one page can be read from a slot per revolution. A slot conflict

occurs when more than one page is requested from the same slot at the same

time. Under this condition only one request can be serviced on the current

revolution; the rest will have to be delayed until they can be serviced on

some future revolutions of the drum. Because of slot conflicts, the

maximum average rate at which pages can be read from a drum can only be

approached. Page writes do not generate slot conflicts. When the channel

program is set up to control the drum operation during the next revolution,

the monitor first schedules as many read requests as possible and then

schedules page writes for the unused slots.

Lauer states that the average rate at which pages can be read is

given by the results of the probability exercise known as the Urn-model

Occupancy problem. Figure 5 shows the average page read rate as a function

of f and kj the number of requests in the page read queue. The case

p = 9, T = 34.4 milliseconds is the one used for the test cases. For this

www.manaraa.com

39

Number of entries in page read queue

Figure 5. Average page read rate

www.manaraa.com

40

configuration 4% pages are placed on each track so that 9 pages can be

referenced during a double drum revolution. The case p = 4, T = 17.2

milliseconds is the same drum reorganized so that 4., pages can be

referenced during each drum revolution.

From the figure it appears that a high page read rate is only

possible with a long read queue. Each entry in the read queue represents

one task which cannot continue executing because it has been placed in a

page-wait state. Lauer has concluded that the paging device must deliver

pages at the rate requested by the job mix in order to minimize the CPU

idle time. Therefore, if drums are used, long read queues must result and

a large amount of main storage must be available to support the large

number of tasks in a page-wait state. He has further concluded that

drums are not well suited as paging devices and should be replaced by LCS.

It was previously shown that job mix 1 requests pages at an average

rate of about 216 pages per second. If the drums must deliver pages at

this rate, the conclusions drawn by Lauer may be correct. However, it can

be demonstrated that the actual rate at which the drums must deliver

pages is considerably less.

There are two major reasons why the rate at which the drums must

deliver pages is less than the rate requested by the job mix. First, and

most important, heavy page requests are only generated during a task's

execution time. No pages are requested during system idle time, and only a

few, if any, are likely to be reqiu>.sted by the system during overhead

time. Therefore, the average rate at which pages are requested is 216

pages per second only if the system execution time is 100% of the CPU time.

www.manaraa.com

41

a situation which is highly unlikely to even be approached.

The second reason is that not all page requests produce page reads.

A page request can be satisfied in one of four ways. In addition to being

read from a paging device, the requested page may have been read during a'

previous time slice and is still available to be retrieved; it may be read

from an I/O device; or finally it may be a shared page which is in main

memory being used by some other task.

As an example, consider Simulation Series I — Run 4. The results of

this simulation show that the system execution time only accounts for 42%

of the total CPU time. This means that the tasks are generating page

requests only 42% of the time or at an average rate of only 90 pages per

second. Of the 90 pages per second requested, an average of 60 pages

per second are read, 13 pages per second are retrieved, and the remaining

17 pages per second are either shared pages or are obtained from I/O devices.

While it is recognized that the requested rate may at times exceed the

rate at which the drums can deliver pages, the important point is that

the drums can keep up with the requested rate by delivering an average

of only 60 pages per second and not the 216 pages per second as originally

assumed. For the average read queue length of 3.4 requests. Figure 5

indicates that each drum can easily deliver 60 pages per second.

The size of the read queue also indicates the number of tasks

currently in a page-wait state. For the example cited the average number

of tasks in main memory at any one time is approximately six. The average

size of the read queue indicates that about half of these tasks are in a

page-wait state; the rest are ready to execute. The fact that the drums

www.manaraa.com

42

only deliver pages at an average rate of 60 pages per second has not

resulted in excessive system idle time caused by many tasks waiting for

page reads.

There is an explanation for the discrepancies between the results

given in Lauer's paper and the results of this study. Lauer has assumed

that the worst case situation is the normal mode of operation in a time

sharing system. The results presented here indicate that his assumption

is not valid.

www.manaraa.com

43

IMPROVEMENT OF SYSTEM PERFORMANCE

An effective way to improve the performance of the time-sharing

computer system is to increase the amount of useful work performed by the

system. To accomplish this, it is necessary to increase the fraction of

time devoted to CPU execution by reducing the unproductive system time.

Because service to the user is of paramount importance in any time-sharing

system, care must be taken to insure that a reasonable response time is

provided. In the following sections, modifications to the paging structure

of the drum-oriented system will be proposed in an attempt to achieve the

goal of improved hardware efficiency. The detailed evaluation of all of

the proposed changes to the paging structure is postponed until the next

chapter.

There are two main causes of CPU idle time in a time-sharing system.

One is a lack of work for the system to perform, and the other is the

inability to deliver pages to waiting tasks. Idle time caused by a lack

of work can be reduced by providing background jobs which execute when no

other work is available and which relinquish control when a higher

priority job (e.g., conversational job) is ready. The results of Simula- .

tion Series I have shown how the addition of background jobs has

significantly reduced system idle time.

The second cause is not so easy to resolve. CPU idle time results

when all tasks in main memory are in a waiting condition. If the rate

at which the drums can deliver pages could be increased, the average

number of tasks in a page-wait state, along with system idle time, should

be reduced. Figure 5 indicates that if the drums are reorganized with 4

www.manaraa.com

44

pages per track rather than the original 4% pages per track, the rate

at which pages can be delivered is greatly increased. The cost of

reorganizing the drums is an 11% reduction in drum capacity.

Simulation Series II — Runs la, 2a, 3a, and 4a were used to

simulate the original system with the reorganized drums. The results are

given in Table 4. A comparison of these results with those of the

original system (Series I — Runs Id, 2b, 3b, and 4) shows that, as

predicted, the system idle time and the size of the drum read queues have

been reduced. It is interesting to note that the percentage of CPU time

used for execution is practically unchanged. Overhead time has increased

because of the additional number of interrupts necessary to schedule the

drums for every single revolution rather than for every double revolution

as was originally the case. Even though the reorganized drums are capable

of delivering pages at nearly twice their original rate, the average

number of pages read per second is essentially the same. Thus, it appears

that this reduction in system idle time has not significantly improved

the performance of the system. It should also be quite clear that even if

all of the GPU idle time could be eliminated, a considerable amount of

time is still devoted to overhead. While it is important to be able to

reduce the system idle time, something must be done about overhead time

before any major improvement in performance will be achieved.

Overhead times cannot be reduced in the same manner as were system

idle times. Overhead is the amount of CPU time needed by the monitor to

perform such functions as interrupt handling and I/O scheduling and is,

therefore, inherent in any system. The paging structure in a time-sharing

system is chiefly responsible for the high overhead times. The remainder

www.manaraa.com

45

Table 4. Results of Simulation Series II

Run la lb Ic 2a 2b 2c

Initialization time

Run time

CPU data
Execution
Overhead
Idle

Response time
Average
Range

Paging rates
Read
Write

Pages retrieved

Drum queue data
Read - average
Write - average

Device utilization
Drums
Nonpaging disks

60 60 60

180 180 180

37.4% 39.3% 41.2%
43.2% 35.9% 31.5%
19.4% 24.8% 27.3%

1.55 1.43 1.39
1-3 1-3 1-3

31 29 27
56 57 61

47 52 58

1.7 1.7 1.5
1.9 2.0 2.1

18-20% 17-21% 18-20%
1-44% 1-48% 1-49%

60 60 60

180 180 180

39.1% 46.1% 48.0%
42.4% 34.7% 29.5%
18.5% 19.2% 22.4%

2.92 ' 2.85 2.91
1-5 1-5 1-5

33 34 33
39 40 39

20 21 20

1.8 1.7 1.8
1.8 1.9 1.8

15-17% 16-17% 14-18%
2-41% 2-38% 2-42%

www.manaraa.com

Table 4 (Continued)

40

Run 3a 3b 3c 4a 4b 4c

Initialization time

Run time

CPU data
Execution
Overhead
Idle

Response time
Average - -
Range

Paging rates
Read
Write

Pages retrieved

Drum queue data
Read - average

Write - average

Device utilization
Drums
Nonpaging disks

60 60 60

180 180 180

56.5% 65.0% 68.1%
40.5% 31.3% 26.9%
3.0% 3.7% 5.0%

3.54 3.55 3.56
3-5 3-5 3-5

23 23 24
31 32 31

23 23 21

1.5 1.4 1.6
1.6 1.9 2.0

11-13% 11-13% 11-13%
1-38% 1-29% 1-32%

60 60 60

180 180 180

42.2% 43.9% 45.1%
49.4% 43.9% 39.4%
8.4% 12.2% 15.5%

3.03 2.88 2.75
2-5 2-5 2-5

59 61 64
56 60 62

17 21 19

2.2 2.4 2.4
2.1 2.7 2.3

25-26% 26-27% 27-28%
1-45% 1-47% 1-50%

www.manaraa.com

47

of this chapter will examine some of the causes of high overhead and will

evaluate changes to the paging structure which are proposed to reduce

overhead times.

Scheduling of the Paging Drums

Each drum operates independently under the control of its own channel

program. A new channel program must be set up for each drum revolution.

To accomplish this, the CPU is interrupted before the start of the next

revolution, and pages are scheduled to be read or written during the next

revolution. Another interrupt at the start of the revolution gives the

channel program control of the drum. This operation is performed for

every single revolution, whether or not there are pages transferred to or

from the drum. Each drum revolves approximately 60 times a second, causing

about 120 channel programs to be set up per second for the two drums. This

amounts to a great deal of unnecessary overhead time if pages are not

transferred during every revolution.

Previous results have demonstrated that the drums are not busy at

all times. This is especially true for the job mixes which have very

low paging requirements. For this reason the decision was made to

eliminate some of these unnecessary interrupts in order to reduce the over

head time. The procedure used is particularly simple. When no pages are

being read or written on the current revolution, the next regularly

scheduled drum interrupt is skipped. If the drums are used during every

revolution, then this procedure has no effect. On the other hand, when

very little paging activity is involved, up to half of the originally

scheduled interrupts arc eliminated.

www.manaraa.com

48

The fact that no pages are being transferred on the current revolution

indicates that no pages are currently pending in a read or write queue.

Any request entering one of these queues after the decision has been made

to skip the next revolution will be delayed longer than usual. This may

/

result in a slight increase in the size of the read or write queues. The

overall system performance, however, should be increased due to the decrease

in overhead time.

Simulation Series II — Runs lb, 2b, 3b, and 4b were used to simulate

the system with the reorganized drums and the drum scheduling procedure just

described. The results of this set of runs indicate a definite improvement

in performance. This can be seen by comparing the simulation results with

those of Runs la, 2a, 3a, and 4a. Overhead has been substantially reduced

causing an improvement in both execution and reponse times. The drum

scheduling procedure appears to be a very beneficial addition to the

system.

Multiple Sets of Registers

The drum scheduling procedure has reduced the overhead by eliminating

some of the interrupts required by the system. This procedure is most

effective when the drums are not being used to their fullest extent but

has little or no effect when high paging rates are involved. Certainly it

is equally important, if not more so, to improve the performance of the

system with high paging rates. The previous discussion and results

indicate that there are gains to be made by using a more efficient

interrupt structure.

An efficient interrupt structure is an especially important asset for

www.manaraa.com

49

a real-time computer system. The Scientific Data Systems (SDS) SIGMA 7

time-sharing computer system was designed primarily to solve the problem

of achieving true real-time response. A set of 16 general registers is

provided in the system. As an option, multiple sets of these registers

can be included. In this way, when an interrupt occurs, it is not

necessary to store the contents of the set of registers in order to

preserve the condition of the system before the interrupt. Instead, a new

set of registers can be used to service the interrupt. The need to restore

the registers at the end of the interrupt to their condition prior to the

interrupt has also been eliminated. Hence, this technique saves the time

needed to store and load the set of general registers for every interrupt.

The only time required is about 6 microseconds to switch control from one

set of registers to another. A detailed description of the design features

for the SIGMA 7 is presented in a paper by Mendelson and England (12).

This idea of adding sets of general registers to increase the

efficiency of the interrupt structure should greatly improve the system

performance. A set of simulations was designed to determine how much of

a gain could be achieved with the addition of five sets of register (one

set for each of the five classes of interrupts in the System/360). The

results of Simulation Series II — Runs Ic, 2c, 3c, and 4c show that in

all cases over 4% of the total CPU time has been removed from the overhead

time and has been distributed between execution and idle times.

The results in this and the previous section indicate that much can

be gained through modification of the interrupt structure. A detailed

evaluation of these performance improvements will be made after all other

changes to the paging structure have been presented.

www.manaraa.com

50

Hardware Paging Structure

Dynamic relocation is achieved in the Model 67 by providing each task

with its own set of relocation tables. These tables provide a map between

the logical addresses of the task and the physical memory addresses.

Whenever a task is given a time-slice, its relocation tables must be in

main memory. Address translation is accomplished by using the task's

logical addresses to access its relocation tables which contain the

physical addresses of the pages belonging to the task.

It is obvious that the relocation tables of a task must at all times

contain the current location of the task's pages. Whenever a page is read

into or written out of main memory, it is necessary to modify the reloca

tion tables to reflect this change. For this software structure, a

considerable amount of overhead is required for each page read or written.

It is interesting to consider the amount of overhead that would be

required for the Model 67 to adjust the relocation tables for the

extremely high paging rates that were discussed in the previous chapter.

Assume for the moment that it is necessary to read pages at the rate of

220 pages per second. Also assume that the rate of pages written out is

approximately two-thirds of the read rate, or about 140 pages per second.

This last assumption is in line with the results of the simulation runs

previously presented and also agrees with the findings of Fine ejt al. (3).

A study carried out by the Stanford Computation Center and reported in the

paper by Nielsen (13) showed that the Model 67 requires approximately 785

microseconds to adjust the tables for a page just read in and approximately

1023 microseconds for a page just written out. Using these values and the

paging rates assumed, the overhead involved only to adjust tables is

www.manaraa.com

51

315,920 microseconds per second, or in other words, 31% of the total CPU

time is spent in adjusting tables. These figures do not begin to reflect

any of the time required to release pages at the end of a time slice, to

select the core page to be replaced when a page is read in, or to perform

any other system overhead functions. This example is simply another indi

cation that even if the paging device could deliver pages at a very high

rate, the system would not be able to make use of this capability because

of the fantastically high system overhead involved.

Since paging-is basic to the operation of a time-sharing system, it

would seem beneficial to implement the paging structure with hardware in

order to provide greater efficiency. The software structure just described

is used primarily because it can be developed from a conventional processor

with very few modifications. The Model 67 CPU is basically a Model 65

processor with only a few changes. While this may be the easiest structure

to implement, it may not be in the best interests of time-sharing.

Consequently, some of the advantages that can be gained by using a hardware

paging structure will be explored.

Instead of relocation tables the hardware paging structure uses one

word for each page in main core. These words contain the logical addresses

currently associated with the memory pages and the information bits which

are used to indicate the current status of a memory page. Address transla

tion is accomplished by interrogating these words to determine if the

desired page is in main core, and if it is, where it is located.

www.manaraa.com

52

Information bits

The information bits associated with each page of main core are used

primarily for page replacement. The information bits for the proposed

structure are described below.

Use bit This bit is set for a page when that page is accessed.

All use bits are reset only after each use bit has been set.

Change bit This bit is set whenever a page is written into and

reset only after the page has been written out to secondary storage.

Activity bit This bit is set whenever the change bit is set, but

it is reset at the time slice end of the current task. These bits are

used at the end of a task's time slice to determine which pages are to be

written out. Note that the change bit remains set until the page is

actually written out.

Transmit/lock bit This bit is set whenever a page is in the

process of being read into or written out of main core. Under no

circumstances can a page be referenced or replaced when this bit is set.

After a channel program has been set up, there is no way to change it.

Hence, this bit is necessary to insure that the pages being read or written

are not tampered with. This bit may also be used as a lock bit to prevent

the referencing of some page which is unusable (e.g., a memory page in

which some fault has been detected).

Protection bits These bits provide the read/write protection for

each page. They may be stored with the other information bits for each

page or with each page in core as in the Model 67.

This structure requires four information bits plus the protection

bits for each page. The ability to locate a core page which has

www.manaraa.com

53

associated with it any combination of information bits is necessary. The

status of any core page at any time can be determined from the configura

tion of the four information bits. Table 5 lists all possible bit

configurations along with the appropriate core page status.

Translation algorithm

The translation algorithm for the proposed paging structure is given

in Figure 6. This algorithm is only concerned with the translation of the

logical page address into the actual page address. The byte portion of

the logical address and the actual address are the same.

Page read algorithm

When a desired page is not in main core, it is necessary to locate

that page in secondary storage and read it into some predetermined location

in main core. The location in main core into which the page is to be read

is selected by the replacement algorithm.

For the hardware structure proposed, the replacement algorithm is very

straight-forward. The information bits for each core page are interrogated

to find a page with the bit configuration:

use change activity transmit/lock

0 0 0 0

All unused pages or pages which have not been used recently will meet this

condition. Hardware must also be provided to select the first core page

which meets this condition in the event of a multiple match.

If this condition cannot be satisfied, then no page replacement can

take place. Note that the change bit is set during the time a page is on

the write queue and reset when it is written out. If the condition for

www.manaraa.com

54

Table 5. Information bit configurations

Information bits
use change activity transmit/lock Status of associated core page^

0 0 0 0 not recently used (NRU)

0 0 0 1 NRU, being read in

0 0 1 0 impossible combination

0 0 1 1 impossible combination

0 1 0 0 NRU, on write-out queue

0 1 0 1 NRU, being written-out

0 1 1 0 NRU, changed during current time slic<

0 1 1 1 impossible combination

1 0 0 0 recently used (RU)

1 0 0 1 RU, being read in

1 0 1 0 impossible combination

1 0 1 1 impossible combination

1 1 0 0 RU, on write-out queue

1 1 0 1 RU, being written out

1 1 1 0 RU, changed during current time slice

1 1 1 1 impossible combination

^Any combination with transmit/lock = 1 may exist when the page is

locked

www.manaraa.com

55

LOGICAL ADDRESS

search for
logical address

no match multiple match

page read

rout ine
single match error

^transmit
lock set?

yes

no

page not
accèssable
return to
system

matched ^
protection
Sjceys?

m

yes

actual address
obtained from
hardware ckt.

remove page
from

write queue

change =15?
activity = &

yes

no

set use bi

/^all
use bits
set?

reset all
^ but current

use bit

yes

.no

ACTUAL ADDRESS

Figure 6. Translation algorithm

www.manaraa.com

56

replacement could not be met, it would most likely be due to an excessively

long write queue. In time, the size of this queue would be reduced, and

the condition for replacement would be met. When it is not possible to read

in a needed page for some task, an end of time slice is called for that

task and the next task is started. The algorithm for the page read

operation is given in Figure 7.

Page write algorithm

To insure that an updated copy of every page exists in secondary

storage, all pages which have been changed during a task's time slice are

written out at the end of the time slice. The activity bits are used to

indicate which pages were changed during a time slice. The page write

algorithm is shown in Figure 8.

If a page which has been accessed is found to be pending on a write

queue, it is necessary to remove that page from the queue. This situation

can be recognized by observing that any page on the write queue meets the

condition, change bit = 1 and activity bit = 0. Note that the activity

bit of a page removed from the write queue must be set to insure that the

page will be written out at the end of the current time slice.

Hardware implementation

In order to evaluate the performance of the hardware paging structure,

some actual implementation will have to be selected. The proposed paging

structure requires that the words associated with each core page be

addressed on the basis of content. Associative registers are ideally

suited for this type of structure.

The model 67 uses eight associative registers to provide rapid address

www.manaraa.com

57

replacement not
possible

location
selected

end

read in page

replacement
algorithm

reset
transmit/lock

end of
time slice

create read
queue entry

locate page in
sec. storage

load log. addr.
set transmit/lock
& use bits

Figure 7. Page read algorithm

www.manaraa.com

58

end

set transmit/lock

write out page

create write
queue entry

locate page in

sec. storage

reset change
transmit/lock &

Figure 8. Page write algorithm

www.manaraa.com

59

translation. Numerous studies of dynamic relocation have also used

associative registers with good results. One such study by Lindquist

et al. (11) investigated the operation of an experimental 360/40 time

sharing system which used an associative memory for dynamic storage

allocation. The associative register configuration used to implement

the proposed paging structure will be similar to that used by Lindquist.

The associative register structure is by no means the only implementa

tion that could have been selected. The major requirement for any memory

chosen is that it is possible to interrogate its contents. If some

search memory is used which cannot be interrogated as rapidly as an

associative array, it may be necessary to include a few current address

registers. These registers would be used to provide the actual addresses

of the most recently accessed pages in much the same way as the associative

registers in the Model 67. In this way, a much slower search memory could

be used quite effectively. The object of this study is not to propose any

particular hardware implementation but rather to evaluate the performance

of the time-sharing system with a hardware paging structure.

The translation hardware is shown in Figure 9. Whenever a job

addresses a memory location, the desired address is placed in the logical

address register. The translation hardware translates this logical

address into the actual address (i.e., the physical location in core).

Since the low order bits (i.e., byte address) of the logical and actual

addresses are the same, only the page portion of the logical address must

be translated.

The page portion of the logical address register is simultaneously

compared with the contents of each associative register to determine which

www.manaraa.com

byte address

logical address

logicaladdress

A match

£i

}
G

/

2
match

logical ,, lint., .
address I bi

LL
ts

^ match

y

I
I I

Li

\

Iz
actual address I inf. bits!

m
d
o o CL
H»

M
O
c
CT

single match

multiple match

no mat ch

o

Figure 9. Associative register translation hardware

www.manaraa.com

61

register contains the desired logical address. Because there is one

register for each page in core, encoding hardware is used to form the page

portion of the actual address once the appropriate register has been

identified. If no register contains the desired logical address (i.e.,

no match), then the desired page is not in core, and a page read request

must be generated to read in the desired page from secondary storage. If

more than one register contains the desired logical address (i.e., multiple

match), then an error condition exists which must be handled by the

monitor. In addition to the translation hardware shown, this structure

has the ability to interrogate the information bits and to change all or

part of any register.

The translation hardware requires about 10 circuit logic levels to

translate a logical address into an actual address. Because of the symmetry

involved and the large potential market, the translation hardware seems

well suited to be implemented with Large Scale Integration (LSI).

Simulation Series III was designed to evaluate the performance of the

hardware paging structure. This series is capable of simulating the

associative register implementation, and it reflects the reduced overhead

parameters determined in a separate study for this configuration. The

equipment configuration and job mixes that were originally developed as

test cases are used in this simulation series. In order to evaluate the

hardware paging structure on its own merits, the original drum structure

has been restored. That being the case, the behavior of this system can

be compared directly with the behavior of the original system, the Model 67.

The three test mixes were used to make Runs 1, 2, and 3, respectively.

The results are given in Table 6.

www.manaraa.com

62

Table 6. Results of Simulation Series III

Run la lb Ic 2a 2b

Initialization time 60 60 60 60 60

Run time 180 180 180 180 180

CPU data
Execution
Overhead
Idle

38.8%
26.1%
35.1%

37.2%
26.0%
36.8%

36.2%
26.3%
37.5%

43.9%
26.7%
29.3%

42.4%
27.5%
30.1%

Response time
Average
Range

1.48
1-3

1.52
1-3

1.58
1-3

3.03
1-5

3.02
1-5

Paging rates
Read
Write

25
57

25
51

28
51

28
38

31
38

Pages retrieved 55 45 43 22 19

Drum queue data
Read - average
Write - average

1.9
2.0

2.0
1.9

2.1
1.7

2.0
1.7

2.1
1.8

Device utilization
Drums 13-17% 13-15% 15% 12-13% 13%
Nonpaging disks 1-48% 1-46% 1-44% 2-47% 2-45%

www.manaraa.com

Table 6 (Continued)

Run 3a 3b 3c

Initialization time 60 60 60

Run time 180 180 180

CPU data
Execution
Overhead
Idle

60.8%
26.8%
12.4%

62.6%
27.5%
9.9%

63.8%
27.9%
8.3%

Response time
Average
Range

3.87
3-5

3.83
3-5

3.75
3-5

Paging rates
Read
Write

24
28

26
31

25
35

Pages retrieved 13 14 19

Drum queue data
Read - average
Write - average

1.9
1.5

1.9
1.8

2.1
1.7

Device utilization
Drums
Nonpaging disks

9-10%
1-36%

10%

1-35%

10-11%
1-35%

www.manaraa.com

64

Runs la, 2a, and 3a simulate the operation of the system with hardware

paging as it has been proposed. The results show that the overhead remains

constant at about 26% while idle time is exchanged for execution time as

more batch jobs are added, A comparison of these results with those for

the original structure shows that the hardware paging structure has removed

5 to 77o of the total CPU time from overhead and distributed it between

execution and idle times. The response times for the hardware structure

have also been reduced slightly. The reduced overhead reinforces the

idea that the hardware structure is more efficient.

A further examination of the results shows that although the system

with the hardware structure performs more useful work than the original

system for the same period of time and same job mix, the number of pages

read per second has been reduced for runs la and 2a. The number of pages

retrieved per second, however, has been increased. This indicates that the

hardware structure allows a greater number of pages to be retrieved while

they are still in core, thus eliminating unnecessary page reads.

In the Model 67 the pages released by a task at the end of a time

slice are placed at the end of one of three core allocation queues. The

first queue contains those pages which were unchanged during the time

slice; the second queue contains those pages which were changed and have

been written out; and the third queue contains the priority pages. The

priority pages consist of the page containing the last instruction executed

before the end of the time slice and the pages containing the task's

relocation tables. When space in core is required for a page being read in

or created by a task, some page in core must be replaced. The assignment

of the page to be replaced is made from the top of the first queue until it

www.manaraa.com

is exhausted, then from the second queue, and finally from the third

queue when the second is exhausted. This insures that the pages which a

task must have in core in order to begin execution in its next time slice

have the least likelihood of being replaced. Whenever a page read is

requested by a task, the core allocation queues are checked to see if the

requested page is in core. If it is, the page is retrieved from the queue,

and an unnecessary page read is avoided.

For the hardware paging structure no allocation queues are needed.

Page replacement is made on the basis of the use bits associated with each

core page. This configuration is analogous to a one queue structure since

the page selected to be replaced is the first one (lowest order) whose use

bit is not set. In this way the most recently used pages are the last to

be replaced.

In order to investigate the effects of multiple core allocation

queues on the hardware paging structure, a second set of runs was

developed which used two queues. Hardware implementation of the two queue

arrangement can be accomplished by adding a priority bit for each page in

core. This bit is set for the page containing the last instruction

executed at the end of a time slice and reset at the start of the task's

next time slice. The replacement algorithm first attempts to locate a

page with the bit configuration:

use change activity transmit/lock priority

0 0 0 0 0

If no core page can be found to meet this first condition, then an attempt

is made to select a page with the bit configuration:

www.manaraa.com

66

use change activity transmit/lock priority

0 0 0 0 1

Thus J the priority pages have the least likelihood of being replaced.

The results of the simulations of this two queue structure are given

by Runs lb, 2b, and 3b. These results indicate that the execution times

for job mixes 1 and 2 have been decreased; while for job mix 3, it has

increased.

To further check this trend. Runs Ic and 3c were made to simulate the

three queue structure used in the Model 67. As expected, the execution time

decreases for Run Ic and increases for Run 3c. Another indication of this

trend is that as the number of queues increases, the number of pages

retrieved per second decreases for Runs 1 and 2 and increases for Run 3.

In order to explain the variation in performance caused by changing

the number of queues, it is necessary to look at the average number of

pages available for replacement (the length of the allocation queues).

At the end of a task's time slice, all pages in core associated with .that

task are made available to be replaced. In addition, all pages in core

associated with a conversational task are made available for replacement

at the start of a terminal wait for that task. Therefore, the

average number of pages which are available for replacement at any time is

likely to be greater for a heavy conversational job mix than for a heavy

batch job mix. This series of simulations indicates that a one queue

structure provides better system performance than a multiple queue structure

does when a large number of pages is available for replacement, and vice

versa.

These results also give some indication of the amount of work being

www.manaraa.com

67

performed by the system. The number of core pages not being used, is, on

the average, higher for job mixes 1 and 2 than it is for job mix 3. This

indicates that the system is capable, of handling more work than is provided

by job mixes 1 and 2. This fact was previously verified by Simulation

Series I — Run 4 when it was shown that the system was capable of

handling a job load double the size of job mix 1.

Queue Structures

The results of the study on hardware paging indicated that the

structure of the core allocation queues had an influence on the performance

of the system. This section reports the results of an investigation of

the effects of queue organizations and queue lengths on system performance.

The hardware structure improved the performance of the system by

reducing the overhead required for each page read or written. Another way

to reduce the overhead is to reduce the number of pages which must be read

or written. The only way to eliminate a page read is to insure that the

requested page is in main core. This situation only occurs when a page

has been previously read into main core and has not been replaced before

it is again addressed. Similarly, a page write can be eliminated only if

the page is addressed by some task before it is written out. By

selecting an appropriate queue organization and by lengthening the alloca

tion and write queues, it may be possible to retrieve more pages from

these queues. In this way unnecessary page reads and page writes would be

eliminated, and the performance of the system may be improved.

It was demonstrated previously that when a large number of core pages

is available for replacement, a single core allocation queue is more

www.manaraa.com

68

efficient than a three queue structure. Conversely, when a small number of

core pages is available for replacement, the three queue structure is more

efficient than a single queue. A dynamic core allocation queue structure

which uses the number of available pages as a decision parameter can be

developed. If the number of available pages exceeds a set threshold level,

all pages released are placed on the first queue. If the number is less

than the threshold level, all pages released are distributed among the

three queues as was done in the original system. Thus, a single queue is

used when it is most efficient, and a three queue structure is used when

it is the most efficient. Since the number of available pages is

constantly changing, the final organization is a compromise between the one

and the three queue structures.

Simulation Series IV was developed to show the behavior of the

original system with the addition of the dynamic core allocation queue

structure. The results of this series are shown in Table 7. Studies

indicated that the optimum threshold level for the test cases used is about

75 pages (i.e., about half of the total number of core pages). Runs la,

2, and 3a Rive the results for job mixes 1, 2, and 3. A comparison of

these results with those of the original system (Series I — Runs Id, 2b,

and 3b) shows that the use of the dynamic queue structure has increased

the fraction of time available for CPU execution and reduced the response

times. Although these are not drastic improvements, they do indicate that

the dynamic structure tends to be more efficient than the original

structure. The threshold level may have to be changed to provide optimum

performance for some other job mix distribution.

By increasing the length of the core allocation queues, more pages are

www.manaraa.com

69

Table 7. Results of Simulation Series IV

Run la lb Ic Id

Initialization time 60 60 60 60 60

Run time 180 180 180 180 180

CPU data
Execution
Overhead
Idle

36.1%
32.9%
31.0%

36.0%
33.4%
30.6%

35.7%
32.7%
31.6%

35.0%
32.1%
32.9%

39.5%
34.0%
26.5%

Response time
Average
Range

1.57
1-3

1.59
1-3

1.61
1-3

1.62
1-3

3.07
1-5

Paging rates

Read

Write

27
51

27
54

27
49

28
44

35
39

Pages retrieved 43 46 41 41 17

Drum queue data
Read - average

Write - average

2.0
1.8

1.9
2.0

2.0
1.6

2.0
9.9

2.4
1.7

Device utilization
Drums
Nonpaging disks

12-18%
1-44%

12-18%

1-44%
12-17%
1-44%

13-14%
1-43%

14-15%
2-44%

www.manaraa.com

Table 7 (Continued)

70

Run 3a 3b 3c 3d

Initialization time 60 60 60 60

Run time 180 180 180 180

CPU data
Execution
Overhead
Idle

60.3%
32.3%

7.4%

59=1%
31.6%
9.3%

60.7%
33.1%
6.2%

59.0%
32.6%
8.4%

Response time
Average
Range

3.75
3-5

3.77
3-5

3.72
3-5

3.81
3-5

Paging rates
Read
Write

25
33

23
29

25
34

25
30

Pages retrieved 18 17 18 18

Drum queue data
Read - average
Write - average

1.8
1.6

1.8
1.5

1.8
1.7

2.0
11.3

Device utilization
Drums
Nonpaging disks

10-11%
1-33%

8-11%

1-41%

11%
1-35%

9-11%

1-42%

www.manaraa.com

71

available to be retrieved. The low core parameter of the system sets a

lower limit on the number of core pages which must be available before

additional tasks are given time slices. Consequently, an increase in the

value of the low core parameter effectively lengthens the core allocation

queues. It should be kept in mind that any increase in the value of the

low core parameter reduces the total number of tasks that can be in the

system at any one time.

Simulation Runs lb and 3b give the results for test mixes 1 and 3 with

the low core parameter set to 60 pages (double the original value). Since

the average number of available pages for test mix 1 is high, increasing

the minimum value had almost no effect. Increasing the length of the

allocation queues did reduce the overhead for test mix 3; however, the

increased idle time caused by the reduction in the number of tasks in the

system more than offset any gain produced by the reduced overhead. Runs

Ic and 3c were made with the low core parameter set to 15 pages. The

performance of the system with test mix 1 was degraded slightly due to an

increase in the number of time slices which were ended because of core

shortage. The system with test mix 3 was able to make use of the extra

pages, but this only amounted to a very small change in performance.

Lengthening the page write queue was accomplished by incorporating into

the simulation the ability to specify the minimum length of the queue.

Runs Id and 3d were made with the minimum length of the write queue set to

10 pages. Even though more pages were retrieved from the write queue so

that less page writes had to be made, the increased idle time produced

a decrease in the performance of the system.

www.manaraa.com

72

This scries of simulations has demonstrated that although the

structure of the core allocation queues has an effect on the performance

of the system, the benefits to be gained are marginal. No significant

improvement in system performance can be made by lengthening the queues.

www.manaraa.com

73

EVALUATIONS AND CONCLUSIONS

The first part of this chapter is devoted to an objective evaluation

of the changes to the paging structure which were proposed in the previous

chapter. The conclusions that can be drawn about the paging structure of

time-sharing systems in general are discussed in the second part of this

chapter. Since this discussion is not concerned with any particular system,

it must be somewhat subjective. The conclusions in this chapter should

also generate some profitable areas for future investigations.

Evaluation of System Performance

This section is concerned with summarizing and evaluating the

proposed changes to the system. Each change is evaluated independently

on its own merits, and then the total system performance, with all changes

incorporated, is examined.

Reorganized drums

The system idle time was drastically reduced when the two paging drums

were reorganized with 4 pages per track instead of the original 4% pages

per track. While it was previously pointed out that this reduction in

idle time has little effect on the fraction of CPU time used for execution,

there are still notable improvements in system performance. In all cases

the average response times have been reduced, thereby improving service to

the users. The average size of the drum read queues has also been reduced

which indicates that, on the average, fewer tasks are in a page-wait state.

These improvements have not been made totally without cost.

Restructuring the drums has decreased the storage capacity of each drum

www.manaraa.com

from 900 to 800 pages. The paging drums are used to store pages only for

those jobs which are currently in the system. After a job has been com

pleted, its page locations on the drum are released. In this way, the

drums act as an extension of main core rather than as permanent storage

devices. The total drum capacity must be larger than the average number

of pages associated with the jobs in the system so that some space is

available to accommodate a large number of jobs. If the total drum

capacity should be exceeded, the excess pages are placed on the disk. The

simulation results for the test mixes indicated that the average number of

-pages associated with the jobs in the system is about 1200. Thus, reducing

the total capacity of the two drums from 1800 to 1600 pages has not caused

any serious problems. Although the number of pages held in reserve for a

large number of jobs has been reduced, the gains in system performance are

significant enough to justify the drum reorganization.

Drum interrupt scheduling

The recommendation to eliminate some of the interrupts used to set up

unnecessary channel programs for the drums was the first of two proposed

changes designed to improve the interrupt structure of the system. Because

of the reduction in the overhead times, the simulation results for this

drum scheduling procedure demonstrated a marked improvement in system

performance. The price paid for these improvements is a very slight

increase in the size of the drum read and write queues for some job mixes.

The increased percentage of CPU time devoted to execution and the reduced

response times make it quite clear that the drum scheduling procedure is a

beneficial addition to the system.

www.manaraa.com

75

The simulation results also show that the greatest improvement occurs

when low paging rates are involved. It was for this reason that the

second change to the interrupt structure was proposed.

Multiple sets of registers

The use of multiple sets of general registers can improve the system

performance by reducing the amount of time required to service an interrupt.

The drum scheduling procedure reduced the total system overhead by

completely eliminating some of the l/O interrupts. The multiple register

concept reduces the total system overhead by reducing the overhead for

every type of interrupt. System/360 has five types of interrupts.

Consequently, the use of multiple sets of general registers produces a more

uniform improvement in system performance because it is not so dependent

on the paging rate as is the drum scheduling procedure.

Scientific Data Systems Company has been able to supply these

multiple sets of general registers in their SIGMA 7 for about $2500 per set

including all necessary hardware. The cost of adding five sets of these

registers seems rather small considering that over 4% of the total CPU time

can be removed from overhead. This performance improvement appears to be

sufficient enough to warrant the use of the multiple register structure.

Hardware paging structure

The paging operation in a time-sharing environment is defined well

enough to allow the paging structure to be implemented in hardware. The

cost of implementing a structure such as the associative register

configuration is by no means trivial, but then neither are the benefits

that can bo gained by using such a structure. The simulation results

www.manaraa.com

76

verify that the hardware structure substantially reduces the overhead

required to handle each page read in or written out. In the previous

chapter, the percentage of CPU time required by the original system to

adjust relocation tables was determined for an extremely high paging rate.

For comparison purposes assume once again that pages are read in at a rate

of 220 pages per second and written out at a rate of 140 pages per second.

The associative register structure requires approximately 340 microseconds

for each page just read in and approximately 370 microseconds for each

page just written out. Using these values, the overhead required by the

associative register structure is 126,600 microseconds per second, or 12%

of the total CPU time. This is a major improvement when compared to the

31% required by the original system. Of course, this is an extreme case,

but it does demonstrate the potential of the hardware paging structure.

In the original system, each task has associated with it at least one

page which contains only the relocation tables for that task. That page

must be in main core whenever the task is active. Since there are about

six tasks active in main core at any one time, the original structure

requires at least six pages of relocation tables to be in core. The

hardware paging structure has eliminated the need for relocation tables,

thereby increasing the amount of usable main core by about six pages.

Thus, in addition to reducing the system overhead, the hardware structure

has effectively increased the size of main core by about 4%.

The increased performance due to the overhead reduction and the

increased amount of usable core seems to justify the use of the hardware

paging structure for the system studied. But more important, if the

www.manaraa.com

77

capabilities of the time-sharing system are to be improved by increasing

the paging rate, some alternative to the softifare structure of the original

system must be found. Hardware paging appears to offer such an alternative.

Queue structures

The study on queue structures and queue lengths concluded that there

are no major improvements to be made by changes in this area. Some improve

ment in system performance can be caused by varying the number of allocation

queues for the different job mixes. The dynamic queue structure provides an

effective way to equalize this improvement across the entire spectrum of

job mixesc

Since the priority pages which contain the relocation tables are not

used by the hardware paging structure, only two queues are needed to provide

a system performance which is nearly identical to that of three queues.

Priority pages can be placed on the second queue with the pages which have

been changed. Hence, a dynamic two queue structure is used with hardware

paging.

Total system performance

To determine the total effect of all the proposed changes on the

performance of the system, a final series of simulations was developed.

The results of Simulation Series V are given in Table 8. To provide some

basis for comparison, the results of the simulations of the original system

are repeated in this table.

The Improvements in system performance are quite obvious. In all

cases the system overhead has been reduced by about one-third. A striking

www.manaraa.com

78

Table 8. Results of Simulation Series V

Series I Series I Series I

Run 1 Id 2 2b 3 3b

Initialization time 60 60 60 60 60 60

Run time 180 180 180 180 180 180 -

CPU data
Execution 43.4% 34.8% 49.7% 38.9% 70.9% 59.2%
Overhead 23.1% 33.1% 23.4% 33.7% 22.3% 32.2%
Idle 33.5% 32.1% 26.9% 27.4% 6.8% 8.6%

Response time
Average 1.30 1.64 2.73 3.11 3.54 3.82
Range 1-3 1-3 1-4 1-6 3-5 3-5

Paging rates
Read 28 28 35 32 24 23
Write 60 50 42 37 31 29

Pages retrieved 56 41 19 17 22 15

Drum queue data
Read - average 1.5 2.0 1.8 2.2 1.5 1.9
Write - average 2.1 1.9 2.1 1.6 1.9 1.6

Device utilization
Drums 18-19% 12-17% 16-17% 12-13% 11-12% 9-10%
Nonpaging disks 1-51% 1-43% 2.43% 2-44% 1-29% 1-35%

\

www.manaraa.com

Table 8 (Continued)

79

Series I
Run 4 4

Initialization time 60 60

Run time 180 180

CPU data
Execution 46.8% 42.2%
0ve rhe ad 27.8% 41.1%
Idle 25.4% 16.7%

Response time
Average 2.57 3.04
Range 2-4 2-5

Paging rates
Read 61 60
Write 62 56

Pages retrieved 21 13

Drum queue data
Read - average 2.3 3.4
Write - average 2.2 1.8

Device utilization
Drums 26-27% 22%
Nonpaging disks 2-53% 1-45%

www.manaraa.com

80

improvomcnt in the response times is also evident. The amount by which

the percentage of CPU time devoted to execution has been increased is

dependent on the job mix. The two totally conversational job mixes (Runs

1 and 4) have not been able to make use of all of the time released from

overhead. As a result, the system idle time has increased for these two

mixes. It is important to note that this increase in idle time is caused

by a lack of work rather than by the inability of the system to deliver

pages. This can be seen in the reduced size of the drum read queues, which

indicates that fewer tasks are waiting for pages to be read. If the system

were unable to deliver enough pages, the size of these queues would have

increased.

The job mixes which include some batch jobs (Runs 2 and 3) have been

able to use the time released from the overhead. The obvious conclusion

is that any job mix should have some background jobs if the system is to be

utilized to the fullest extent. It must be remembered that the job mixes

used as test cases were designed to reflect the extremes in the job load,

any real job mix would contain both conversational and batch jobs.

There are no sharp increases in the paging rates of the system. The

drum utilization has also only increased slightly. These results indicate

once again that the paging drums are capable of supplying pages as required.

All of the proposed hardware changes to the original system would add

about 5% to the total system cost. The performance gains achieved by these

changes should more then justify the increased cost.

www.manaraa.com

81

Conclusions

The object of this entire study has not been to only propose specific

changes for any particular time-sharing system. Rather, it has also been

to illuminate those areas of the paging structure which appear to offer the

largest potential gains in system performance. In the light of these

objectives the following conclusions have been drawn.

The need to efficiently deliver pages from secondary storage to main

memory is of primary importance in a time-sharing system. Contrary to the

conclusions of some investigators, such as Lauer (10), this study concludes

that the paging drums are able to maintain a satisfactory level of

performance, and that a more efficient device, such as LCS, is not needed.

While it is conceded that LCS can deliver pages at a higher rate than the

paging drums, all evidence indicates that the additional cost of LCS is not

warranted simply because-the system could not make use of the increased

capabilities.

The experimental findings of this study support the conclusion that

there is much to be gained by changes to the scheduling and interrupt

structures of the system. The improvements which can be made are not

limited to just time-sharing systems but can also benefit the performance

of conventional systems. That being the case, the scheduling and

interrupt structures appear to offer very promising areas for investigation.

The hardware paging structure is felt to be the most significant

improvement that can be made to the time-sharing system. If time-sharing

is to be taken seriously, it would seem appropriate to design the system

to fit the peculiar needs required for time-sharing, rather than to adjust

the time-sharing philosophy to fit a conventional structure.

www.manaraa.com

Perhaps a separate special-purpose processor could be designed to

perform the paging and scheduling operations. Both of these operations

are fairly well defined and could be implemented almost totally in hard

ware. The special processor would be used in conjunction with a fairly

conventional processor to provide the system with time-sharing capabilities.

This processor would have its own access to main memory and could be

located on the main frame of the conventional structure. Because of its

well-defined functions, it could be a fairly low cost processor. The use

of such a structure would provide parallel operation of paging and

scheduling with the other system functions.

The simulations have revealed that varying the structures and lengths

of the many queues in the system does not greatly affect the system

performance. Most of the analytical studies of time-sharing systems have

concentrated on the queue structures. A number of other investigations

have concerned themselves with determining an optimum replacement algorithm.

While there is no doubt that there are benefits to be gained by modifica

tions to these areas, this study raises the question of just how important

these gains are with respect to the total system performance. It would

appear that there may not be as much to be gained by changes to the queue

structures and replacement algorithms as is thought in some circles.

There are a number of other important areas in the time-sharing

philosophy. The scheduling or ordering of jobs to be processed is

important for the efficient operation of a time-sharing structure.

Assignment of job priorities is one area open for investigation. Perhaps

a dynamic priority structure could be designed in which a program that

has just been compiled is given a higher priority because its pages are in

www.manaraa.com

83

main core ready for immediate execution. Numerous variations on this

design are possible.

Another area closely related to job scheduling is time slice

allocation. Time slice allocation refers to the amount of processor

time that should be given to any particular job when it is scheduled

to receive CPU cycles. A few questions to be answered are: Should the

allocation be made to insure the progress of the system at the expense of

some jobs? Must the allocation be fair? Should all jobs in the same

priority class be allowed to make equal progress? What is an appropriate

time slice length?

It should be apparent that there are many areas still to be explored

which may or may not significantly improve the system performance. The

use of a simulation program has proved to be an extremely effective-way to

investigate the many aspects of a time-sharing computer system.

Concluding Remarks

In order to compare the performance of one system with the performance

of another, some "figure of merit" would be desirable. The amount of CPU

time devoted to execution, the system overhead time, the system idle time,

the response time, the paging rates, etc. are all important factors in

evaluating system performance. It soon becomes clear that no single

measure can be found to evaluate the total performance of a time-sharing

system. Therefore, no attempt has been made to define a "figure of merit".

The concept of performance gained per dollar spent has also been avoided

for much the same reason.

www.manaraa.com

84

The validity of any simulation is always open to question. A great

deal of care was taken in the selection of the test cases in order to insure

valid results, and the simulation selected has been shown to accurately

reflect the behavior of the Model 67. For these reasons, it is felt that

the variations in system performance are valid and that the conclusions

drawn from these results are correct.

www.manaraa.com

85

BIBLIOGRAPHY

1. Comfort, Webb T. A computing system design for user service. Joint
Computer Conference Proceedings, Fall 27: 619-626. 1965.

2. Fife, Dennis W. An optimization model for time-sharing. Joint
Computer Conference Proceedings, Spring 28: 97-104. 1966.

3. Fine, Gerald H,, Jackson-,=,Calvin W. and Mclsaac, Paul V. Dynamic
program behavior under paging. ACM National Meeting Proceedings
1966: 223-228. 1966.

4. Fine, Gerald H. and Mclsaac, Paul V. Simulation of a time-sharing
system. Management Science 12: B180-B194. 1966.

5. Gibson, Charles T. Time-sharing in the IBM system/360: model 67.
Joint Computer Conference Proceedings, Spring 28: 61-78. 1966.

6. Huesmann, L. R. and Goldberg, R. P. Evaluating computer systems
through simulation. Computer Journal 10: 150-156. 1967.

7. International Business Machines. IBM system/360 model 67 functional
characteristics. Form A27-2719. Place, IBM. 1966.

8. Kilburn, T., Edwards, D. B. G., Lanigan, M. J. and Sumner, F. H.
One-level storage system. I.R.E. Trans. Electronic Computers
11: 223-235. 1962.

9. Krishnamoorthi, B. and Wood, Roger C. Time-shared computer operations
with both interarrivai and service times exponential. Journal of
the ACM 13: 317-338. 1966.

10. Lauer, Hugh C. Bulk core in a 360/67 time-sharing system. Joint

Computer Conference Proceedings, Fall 31: 601-609. 1967.

11. Lindquist, A. B., Seeber, R. R. and Comeau, L. W. A time-sharing
system using an associative memory. I.E.E.E. Proceedings

54: 1774-1779. 1966.

12. Mendelson, Myron J. and England, A. W. The SDS sigma 7: a real
time time-sharing computer. Joint Computer Conference Proceedings,
Fall 29: 51-64. 1966.

13. Nielsen, Norman R. The analysis of general purpose computer time

sharing systems: doc. 40-10-1. Stanford, California, Stanford

Computation Center. 1966.

14. Nielsen, Norman R. An approach to the simulation of a time-sharing
system. Joint Computer Conference Proceedings, Fall 31; 419-428.

1967.

www.manaraa.com

86

15. Nielsen, Norman R. The simulation of time-sharing systems. Communi
cations of the ACM 10: 397-412. 1967.

16. Scherr, A. L. An analysis of the time-shared computer systems:
MAC-TR-18. Cambridge, Massachusetts, Massachusetts Institute of

Technology. 1966.

17. Smith, J. L. An analysis of time-sharing computer systems using
Markov models. Joint Computer Conference Proceedings, Spring 28:
87-104. 1966.

18. Wallace, Victor L. and Rosenberg, Richard S.• Markovian models and

numerical analysis of "computer system behavior. Joint Computer
Conference Proceedings, Spring 28: 141-148. 1966.

www.manaraa.com

ACKNOWLEDGMENTS

The author would like to thank his major professor, Dr. Robert M.

Stewart, for his advice and encouragement during the preparation of this

dissertation. The author also gratefully acknowledges the support given

by the National Aeronautics and Space Administration in the form of a

graduate fellowship and by IBM Corporation in the form of an educational

leave of absence. Credit for typing this manuscript is given to

Mrs. Margi Wibholm. In addition, the author owes a special debt of

gratitude to his wife, Sandra, whose help and understanding made this

undertaking possible.

www.manaraa.com

88

APPENDIX

This appendix is designed to give the reader a brief description of

the IBM System/360 Model 67 Time-Sharing System. Since the design of the

Model 67 is similar to other systems in the 360 line, only those

characteristics of the system which are unique to the time-sharing

capabilities are discussed.

The basic mode of operation in the Model 67 is time-sliced multi

programming. The basic unit of control in the system is a task. Every

item of work to be performed by the system (e.g., programs, etc.) is set

up as a task. Each task has its own virtual memory with its own set of

relocation tables.

Dynamic relocation is defined as the method by which virtual storage

is translated into actual storage. Virtual storage is all storage which

can be reached by the logical address. The logical address is that

address known to the program. For a 24 bit logical address, there are

= 16,777,216 byte locations in the virtual storage of each task. The

Model 67 also has provisions for 32 bit addressing. The actual address is

the address presented to physical memory for the reference.

Relocation allows a program to be broken up in memory into pages;

and it provides a means of moving programs into and out of main core,

each time relocating the program pages at different physical locations.

Each page in the Model 67 contains 4096 bytes. The low order 12 bits of

the logical address are used to indicate the address of each byte within

a page. Since relocation is only concerned with page addresses, the low

order bits of the logical address are not translated. Therefore, the low

www.manaraa.com

order 12 bits of the logical address and of the actual address are the

same.

A group of 256 pages is called a segment. The high order bits of

the logical address indicate the segment number; the next 8 bits indicate

the page numb en; and the 12 low order bits indicate the byte address.

The relocation operation is accomplished under program control with

all relocation tables in main core. Whenever a task begins operation,

the system's table register is loaded with the starting address and the

length of the segment table associated with that task. To translate a

logical address into the actual address, the segment part of the logical

address is first used to locate the corresponding entry in the segment

table. The entry in the segment table contains the starting address and

length of a page table. The page part of the logical address is then

used to locate the desired entry in the page table. The page table entry

contains the actual address of the page in core. If the page is not in
f

i'.

core, a bit in the page table entry indicates this fact.

Thus, it is necessary to make two references to main memory (i.e.,

one to obtain the segment table entry and the other to obtain the page

table entry) for each address translation. The total time required for

the translation operation is about 2.1 microseconds. Since this transla

tion must occur for every instruction fetched, the amount of time required

for this look-up procedure would be objectionable. For this reason an

associative memory is used to reduce the translation time to an acceptable

level. This high-speed associative memory consists of eight registers

which contain the segment and page portions of the logical addresses of

the most recently used pages along with their actual addresses. When an

www.manaraa.com

address is to be translated, the segment and page parts are compared

simultaneously with the contents of all eight registers. If the proper

page iS' found, its address is immediately available; if not, the

previously described method of address translation must be followed. The

associative memory is updated to contain only the eight page references

most recently used. The time required to interrogate the associative

memory is only 0.15 microseconds.

All tasks in the system are grouped into one of three priority

levels. First level tasks (i.e., bulk l/O operations) have the highest

priority and are given CPU time immediately when ready and for as long a

time as necessary. Second level tasks (i.e., conversational jobs) are

given a time slice every operational cycle time (OCT). The length of the

OCT is a monitor parameter which together with the length of a time slice

controls the task scheduling in the system. If the OCT is too short, it

will be extended to give every second level task a time slice. Third

level tasks (i.e., batch jobs) are given a time slice if all second level

tasks have received their time slice and time still remains in the OCT.

To determine which tasks are eligible to receive CPU time, two

pointers, called the front wall and the commutator, move from the beginning

of the second level task list toward the end of the third level task list

each OCT. Tasks between the two pointers are given CPU time. Whenever

a task has received its time slice, it is placed in a time slice end

status. When the commutator encounters a task in the time slice end

status, it marks the task's pages available for replacement and advances

to the next task.

www.manaraa.com

91

Movement of the front wall is controlled by the low core parameter.

Whenever a task is included in the wall, its estimated page requirements

(i.e., pages used during its previous time slice) are deducted from the

extra page count. Whenever the commutator advances, the number of pages

released is added to the extra page count. In this way, the extra page

count is the number of pages not expected to be used by the tasks between

the commutator and the front wall. The low core parameter is the number

of pages to be saved for a larger than expected need. The front wall

will not move ahead if the estimate of extra pages is less than the low

core parameter.

Detailed descriptions of the features just presented, as well as

descriptions of the more conventional aspects of the Model 67, are given

J in the papers by Gibson (5), Comfort (1), and the IBM manual (7).

	1968
	Automatic allocation of digital computer storage resources for time-sharing
	Frank Gerald Soltis
	Recommended Citation

	tmp.1412355273.pdf.XRi3p

